大发快三

当前位置: 最新试题
    1. (1) 解方程:
    2. (2) 解不等式组:
  • 2. (2020·徐州) 计算:
    1. (1)
    2. (2)
  • 3. (2020·徐州) 小红和爸爸绕着小区广场锻炼如图在矩形广场 的中点 处有一座雕塑.在某一时刻,小红到达点 处,爸爸到达点 处,此时雕塑在小红的南偏东 方向,爸爸在小红的北偏东 方向,若小红到雕塑的距离 ,求小红与爸爸的距离 .(结果精确到 ,参考数据:

  • 4. (2020·徐州) 如图在平面直角坐标系中,一次函数 的图像经过点 交反比例函数 的图像于点 ,点 在反比例函数的图像上,横坐标为 轴交直线 于点 轴上任意一点,连接 .

    1. (1) 求一次函数和反比例函数的表达式;
    2. (2) 求 面积的最大值.
  • 5. (2020·徐州) 下列垃圾分类标识的图案既是轴对称图形,又是中心对称图形的是(   )
    A . B . C . D .
  • 6. (2020·徐州) 如图, 的弦,点 在过点 的切线上, 于点 .若 ,则 的度数等于(   )

    A . B . C . D .
  • 7. (2020·徐州) 方程 的解为________.
  • 8. (2020·徐州) 我们知道:如图①,点 把线段 分成两部分,如果 .那么称点 为线段 的黄金分割点.它们的比值为 .

    1. (1) 在图①中,若 ,则 的长为________
    2. (2) 如图②,用边长为 的正方形纸片进行如下操作:对折正方形 得折痕 ,连接 ,将 折叠到 上,点 对应点 ,得折痕 .试说明 的黄金分割点;
    3. (3) 如图③,小明进一步探究:在边长为 的正方形 的边 上任取点 ,连接 ,作 ,交 于点 ,延长 交于点 .他发现当 满足某种关系时 恰好分别是 的黄金分割点.请猜想小明的发现,并说明理由.
  • 9. (2020·徐州) 中,若 ,则 的面积的最大值为________.
  • 10. (2020·徐州) 如图,在平面直角坐标系中,函数 的图像交 轴于点 ,交 轴于点 ,它的对称轴交 轴于点 .过点 轴交抛物线于点 ,连接 并延长交 轴于点 ,交抛物线于点 .直线 于点 ,交抛物线于点 ,连接 .

     

                                   备用图            

    1. (1) 点 的坐标为:________;
    2. (2) 当 是直角三角形时,求 的值;
    3. (3) 有怎样的位置关系?请说明理由.
1 2 3 4 5 下一页 共1000页